- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Mihalcea, Leonardo C (2)
-
Naruse, Hiroshi (2)
-
Su, Changjian (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nakada’s colored hook formula is a vast generalization of many important formulae in combinatorics, such as the classical hook length formula and the Peterson’s formula for the number of reduced expressions of minuscule Weyl group elements. In this paper, we use cohomological properties of Segre–MacPherson classes of Schubert cells and varieties to prove a generalization of a cohomological version of Nakada’s formula, in terms of smoothness properties of Schubert varieties. A key ingredient in the proof is the study of a decorated version of the Bruhat graph. Weights of the paths in this graph give the terms in the generalized Nakada’s formula, and the summation over all paths is equal to the equivariant multiplicity of the Chern–Schwartz–MacPherson class of a Richardson variety. Among the applications we mention an algorithm to calculate structure constants of multiplications of Segre–MacPherson classes of Schubert cells, and a skew version of Nakada–Peterson’s formula.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Mihalcea, Leonardo C; Naruse, Hiroshi; Su, Changjian (, Proceedings of the Japan Academy, Series A, Mathematical Sciences)
An official website of the United States government
